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u(x, 0) ; uL(x , 0), u(x, 0) ; uR(x . 0). (3)
Several numerical schemes for the solution of hyperbolic conser-

vation laws are based on exploiting the information obtained by
That is, we study the breakup of a single discontinuity.considering a sequence of Riemann problems. It is argued that in

Those cases where F(u) is linear are well known and essen-existing schemes much of this information is degraded and that
only certain features of the exact solution are worth striving for. It tially trivial (see [1] for a brief discussion). Those cases
is shown that these features can be obtained by constructing a where u is scalar and F is nonlinear can be surprisingly
matrix with a certain ‘‘Property U.’’ Matrices having this property are intricate, but have been thoroughly investigated [2]. If u
exhibited for the equations of steady and unsteady gasdynamics. In

is a vector and F is nonlinear, then the problem involvesorder to construct them, it is found helpful to introduce ‘‘parameter
nonlinear algebraic equations together with, usually, logi-vectors’’ which notably simplify the structure of the conservation

laws. Q 1981 Academic Press. cal conditions which express the fact that a given member
of the wave system may be present either as a shockwave
or as an expansion fan. A review of results relating to the

INTRODUCTION general Riemann problem has been given by Lax [3]. In
general, the most efficient way to solve these equations

We consider the initial-value problem for a hyperbolic will depend on the system of conservation laws (1) from
system of conservation laws, i.e., we seek a vector u(x, t) which they derive; ingenuity is required to exploit special
such that features of each individual system. For the special case of

the unsteady Euler equations in one space dimension, an
ut 1 Fx 5 0 (1) algorithm was devised by Godunov [4] and is available in

the books by Richtmyer and Morton [5] and Holt [6]. A
variant which converges more rapidly was worked out byand
van Leer [7].

The usual way of incorporating the Riemann problemu(x, 0) 5 u0(x), (2)
into the numerical solution is to take (un

i , un
i11), for each i

in turn, as pairs of states defining a sequence of Riemann
where F is some vector-valued function of u, such that the

problems, which are then thought of as providing informa-
Jacobian matrix A 5 ­F/­u has only real eigenvalues.

tion about the solution within each interval (i, i 1 1).
We introduce the discrete representation xi 5 x0 1 i Dx,

Various individual methods are then distinguished by the
tn 5 t0 1 n Dt and suppose that un

i is some approximation
way in which this information is put to use. Briefly, we

to u(xi , tn).
review these below.

A multitude of strategies have been devised to obtain
Godunov [4] supposed that the initial data could be

numerical results for the discrete problem, and their rela-
replaced by a piecewise constant set of states with the

tive merits are still largely unclear. We shall address in this
discontinuities at hxi11/2j. He then found the exact solution

paper some questions relating to those methods which
to this simplified problem. After some time step Dt (less

attempt to construct the solution by solving a succession
than Dx divided by the greatest wavespeed found in the

of Riemann problems. Recall that the Riemann problem
Riemann solutions) he replaced the exact solution by a

is the initial-value problem obtained when the general data,
new piecewise constant approximation, whilst preserving

Eq. (2), is specialised to
integral properties of the conserved variable u. The first
major extension to this line of approach was made by van
Leer [7], who approximated the data and the solution atReprinted from Volume 43, Number 2, October 1981, pages 357–372.
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each subsequent time level, by piecewise linear segments, ut 1 Ãux 5 0,
allowing discontinuities between the segments. This re-
quired the solution to an interaction problem which was where Ã is a constant matrix, and the data (uL , uR) are of
more general than Riemann’s, but raised the order of accu- course unaltered. Ã is to be chosen so that it is representa-
racy of the method from one to two. tive of local conditions. Candidates which immediately

A parallel line of development was initiated by Glimm come to mind are Ã 5 As(AL 1 AR), or Ã 5 A(As(uL 1 uR)).
[8], who followed Godunov as far as the exact solution to We shall, however, only accept a matrix Ã(uL , uR) which
the simplified problem, but then obtained the new approxi- satisfies the following list of properties:
mation by a random sampling procedure. The sampling

(i) It constitutes a linear mapping from the vectorproduces solutions, which are conservative only on the
space u to the vector space F.average, but has the advantage that near a moving, isolated,

discontinuity, the solution is incremented either by the full (ii) As uL R uR R u, Ã(uL , uR) R A(u), where
amount of the jump, or not at all. In this way, initially A 5 ­F/­u.
sharp discontinuities remain sharp, and for some technical (iii) For any uL , uR , Ã(uL , uR) 3 (uL 2 uR) 5 FL 2 FR .
problems this property is important. More refined sampling

(iv) The eigenvectors of Ã are linearly independent.procedures have been introduced (see, e.g., Chorin [9],
but so far the accuracy of the method approaches unity In general, neither of the candidates mentioned above
from below. would satisfy condition (iii).

It seems to the present author that the expense of pro- Once such a matrix has been constructed, then its eigen-
ducing an accurate solution to the Riemann problem would values can be considered as the wavespeeds of the Riemann
only be justified if the abundance of information which problem, and the projections of uR 2 uL onto its eigenvec-
is thereby made available could be put to some rather tors are the jumps which take place between intermediate
sophisticated use. Indeed, it must somehow be true that the states [1]. In [1], it is shown that (iii) is a sufficient condition
accuracy with which it is worthwhile solving the Riemann for the algorithm produced by the mechanism to be conser-
problem will be limited by the way we intend using the vative. It is also shown that (iii) and (iv) are necessary and
solution. For example, we may consider the use of less sufficient conditions for the algorithm to ‘‘recognize’’ a
accurate solutions in existing methods. Harten and Lax [10] shockwave. By this we mean that if (uL , uR) satisfy the
have devised an approximate Riemann solver particularly jump condition
designed for incorporation into Godunov-type or Glimm-
type difference schemes. The approximation developed

(FL 2 FR) 5 S(uL 2 uR) (5)herein could be (and has been) used in the same way, but
in comparison with the Harten and Lax approximation it
suffers the theoretical disadvantage of not having a natu- for some scalar S, then, by (iii), S is an eigenvalue of Ã.

A projection of (uL , uR) onto the eigenvectors of Ã willrally constructed entropy condition; this point will be dis-
cussed in more detail later. On the other hand, the present (because of (iv)) be solely onto the eigenvector which

corresponds to S. In this special case, the solution of theapproximation is designed to provide the information
needed to obtain high formal accuracy, following the strat- Riemann problem will be exact.

Evidently (ii) is a necessary condition if we are to recoveregy set out by Roe [1]. That paper essentially described a
mechanism by which any algorithm developed for numeri- smoothly the linearized algorithm from the nonlinear

version.cal solution of the linear advection equation
Collectively, this list of properties has been christened

Property U (since it is intended to ensure uniform validityut 1 aux 5 0 (4)
across discontinuities). It is thought to specify desirable
properties of a Riemann solver because of the followingcan be generalised to the case of nonlinear systems. A

large body of unpublished numerical results for Burger’s heuristic argument. Consider a region of the x, t plane
containing O(N2) points and traversed by a finite numberequation, the nonlinear shallow-water equations, and the

steady and unsteady Euler equations, demonstrates that of discontinuities. At the majority of points, nothing very
special is happening, and the choice of method is not criti-all qualitative features of each algorithm are faithfully

transmitted by the mechanism. The same evidence suggests cal. At a number of points which is O(N), we are close to
a single discontinuity; here Property U will allow us tothat accuracy also carries over, at least to third order.

An essential stage in the mechanism is the approximate recognize the situation and to deal with it appropriately.
At a number of points which is O(1), we are close to twosolution of a nonlinear Riemann problem.

In this paper we consider approximate solutions which or more discontinuities, and such a situation will not be
resolved on a fixed grid. In accordance with the shock-are exact solutions to an approximate problem, viz.,
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capturing philosophy, we must here put our trust in conser- interesting to remark that in the common case where each
component of F is a rational function of the componentsvation, which is also assured by Property U.

If we have to deal with more space dimensions, say of u, an Ã can be found whose entries are likewise rational
functions of the components of u. The following identities(x, y) as well as t, then successful shock-capturing involves

additional difficulties. One of these is that there is no obvi- are obviously true for arbitrarily large jumps of any scalar
quantities, where D(?) 5 (?)L 2 (?)R :ous ‘‘generalized Riemann problem’’ to serve as a building

block. In practice, it has been found [12] that if the multidi-
D(p 1 q) ; Dp 1 Dq, (6a)mensional operator is split into a sequence of one-dimen-

sional operators, then the present method may be applied D(pq) ; p Dq 1 q Dp, (6b)
to each operator. This gives good results so long as the

D(1/q) ; 2Dq/q*2, (6c)shockwaves remain aligned with the computing grid; such
shockwaves are accurately recognized and appropriately

where the overbar denotes an arithmetic, and the asterisktreated. Problems arise when the shockwave lies obliquely
a geometric, mean value. In this way we shall be led to aacross the grid, and they are particularly severe as the
formula of the formsolutions attempt to reach a steady state. This is because

neither of the split operators, by itself, recognizes the
Fj(uL) 2 Fj(uR) 5 O

i
ãi j[(ui)L 2 (ui)R], (7)oblique shock as being in equilibrium. Under these condi-

tions, the concept of operator splitting becomes rather
dubious, but the finding of a satisfactory alternative is where each ãi j depends on uL and uR . The matrix whose
beyond the scope of this paper. entries are ãi j satisfies conditions (i) to (iii) of Property U.

Matrices for the unsteady Euler equations were con-
CONSTRUCTION OF Ã structed in this way and are given in [11]. However, there

are many disadvantages to this construction.It is very easy to construct Ã so that it meets conditions
In the first place, it is far from unique, as may easily be(i) and (ii) above. Condition (iv) is easily checked a posteri-

seen by applying the second of the above formulae in anori. The difficulty lies entirely with condition (iii). The
obvious way to D(pqr) and noting that the outcome de-existence of an Ã satisfying condition (iii) follows from
pends on the order of doing the multiplications. Second,the mean value theorem. Let u be a parameter which varies
the formulae obtained tend to be rather cumbersome, espe-linearly between 0 and 1 along a straight path connecting
cially bearing in mind that we actually want to obtainuL to uR , so that
analytical expressions for the eigenvalues and eigenvectors
of Ã. Not only does the algebra become almost impossible

u(u) 5 uL 1 u(uR 2 uL), du 5 (uR 2 uL) du. to carry through without error, but the whole object of
creating a neat and efficient approximate solution is being

Then defeated. We present in the following section a simple
device which has so far worked each time that it has been
tried. Indeed, in the case of the Euler equations, it simpli-F(uR) 2 F(uL) 5 E1

0

dF
du

du
fies the structure so much that it may well have applications
outside the present context.

5 E1

0
A(u)

du
du

du

THE PARAMETER VECTOR

5 E1

0
A(u) du · (uR 2 uL),

The inspiration for this section is taken from the com-
mon experience in analytic geometry that a plane curve

whence y(x) may in some cases be much more easily described by
a parametric form y 5 y(t), x 5 x(t). We may therefore
expect that a multidimensional manifold such as F(u) mayÃ 5 E1

0
A(u) du.

sometimes be more amenable if represented as F 5 F(w),
u 5 u(w), where we may speak of w as a parameter vector.

However, the integrals involved may not emerge in We now exhibit a very useful parameter vector for the
closed form, or the closed form might be expensive to Euler equations, which we write as
compute. By a more subtle choice of path, candidates for
Ã can be found which are integrable, and an approach ut 1 Fx 1 Gy 1 Hz 5 0, (8)
similar to this has been taken by Osher and Solomon [12].

Since computational speed is a major requirement, it is where
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u 51
r

ru

rv

rw

e

2 , F 51
ru

p 1 ru2

ruv

ruw

u(p 1 e)

2 ,

(9)

B̃ 51
2w1 0 0 0 0

w2 w1 0 0 0

w3 0 w1 0 0

w4 0 0 w1 0

w5

c
c 2 1

c
w2

c 2 1
c

w3
c 2 1

c
w4

w1

c

2 (14)

and all the overbars denote arithmetic means. Likewise
we can writeG 51

rv

ruv

p 1 rv2

rvw

v(p 1 e)

2 , H 51
rw

ruw

rvw

p 1 rw2

w(p 1 e)

2 ,

(FL 2 FR) ; C̃(wL 2 WR), (15)

where
in which r 5 density, p 5 static pressure, (u, v, w) 5
velocity in cartesian coordinates (x, y, z), and e is the total C̃
energy, related to the other variables by an equation of
state which, for a perfect gas, is

e 5
p

(c 2 1)
1 Asr(u2 1 v2 1 w2). (10)

51
w2 w1 0 0 0

c 2 1
c

w5
c 2 1

c
w2 2

c 2 1
c

w3 2
c 2 1

c
w4

c 2 1
c

w1

0 w3 w2 0 0

0 w4 0 w2 0

0 w5 0 0 w2

2.

Various special cases (two-dimensional, steady, etc.) fol-
low obviously by striking out the irrelevant terms. We
assert that every component of u, F, G, H is merely qua-
dratic in the components of (16)

w 5 r1/2(1, u, v, w, H)T, (11) Obviously these very simple formulae are closely related
to the homogeneous property of the Euler equations. The

where total enthalpy H is related to previously defined vectors u, F, G, H are each homogeneous of order one
quantities by rH 5 e 1 p. Other choices are possible for with respect to any of the others; also each of them is
this fifth component, but lead to marginally more compli- homogeneous of order two with respect to w. However,
cated algebra. the homogeneous property is not essential for the existence

The truth of this is obvious in most cases. For example, of a parameter vector. The reader may experiment with
u1 5 w2

1 , G4 5 w3w4 , etc. Some of the less obvious ones are parameter vectors for the shallow-water equations, which
do not have the homogeneous property.

u5 5
w1w5

c
1

(c 2 1)
2c

(w2
2 1 w2

3 1 w2
4), (12a) EIGENVECTORS AND EIGENVALUES FOR THE

EULER EQUATIONS

F2 5
c 2 1

c
w1w5 1

c 1 1
2c

w2
2 2

c 2 1
2c

(w2
3 1 w2

4), (12b)
Now suppose that we wish to analyse (by operator split-

ting) some problem of unsteady three-dimensional flow.
and G3 , H4 follow by symmetry. We will wish to construct the eigenvalues and eigenvectors

It is now very easy to represent any jump in the spaces of some matrix Ã which maps Du onto DF with Property
u, F, G, H in terms of its image in the space w, merely by U. (The matrices which map Du onto DG, DH will follow
use of (6b). For example, given any pair of states (uL , uR) from symmetry.) Evidently we may choose Ã 5 (C̃)(B̃)21.
and their images (wL , wR) we can write To find the eigenvalues of this mapping we may solve

((C̃)(B̃)21 2 lI) Du 5 0,(uL 2 uR) ; B̃(wL 2 wR), (13)

where i.e.,
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an arbitrary Du onto the eigenvectors as basis, i.e., how to(C̃ 2 lB̃) Dw 5 0, (17)
find the coefficients ai in

i.e.,

Du 5 O5
1

aiei .
det(C̃ 2 lB̃) 5 0. (18)

A routine calculation yieldsAt this stage it is convenient to divide through by w1

and then to adopt a convention that for the remainder of
this paper u, for example, means a2

c 2 1
a4 5 (H 2 q2) Du1 1 u Du2 1 v Du3

1 w Du4 2 Du5 , (22a)u 5
r1/2

L uL 1 r1/2
R uR

r1/2
L 1 r1/2

R
5

w2

w1 wa3 5 Du4 2 w Du2 , (22b)

va2 5 Du3 2 v Du1 , (22c)with a similar interpretation for v, w, H, i.e.,

a1 1 a5 5 Du1 2 a4 , (22d)

v 5
w3

w1
, w 5

w4

w1
, H 5

w5

w1
. a(a5 2 a1) 5 Du2 2 u Du1 . (22e)

For computational purposes, it is better to extract factorsThen (18) reduces to
v, w from e2 , e3 , so that a2 , a3 are never indeterminate. If
this is done, we carry out the a posteriori check that the

(l 2 u)3[(l 2 u)2 2 (c 2 1)hH 2 As(u2 1 v2 1 w2)j] 5 0. eigenvectors form a linearly independent set by arranging
(19) them into a matrix and finding the determinant; this comes

out to be 2a3/(c 2 1), which is never small unless the Mach
To find the eigenvectors, it is easiest to begin by finding number is very large.

their images in w-space (by solving (17) with l set equal If we wish to solve problems of wholly supersonic flow
to a root of (19)), and then mapping into u-space. The by marching in the x-direction, then we need a similar
results are analysis for the mapping DF R DG. This follows an identi-

cal pattern, but the results are slightly more complicated.
The equation for the eigenvalues is

(lu 2 v)3[(lu 2 v)2 2 a2(1 1 l2)] 5 0 (23)
e1 51

1

u 2 a

v

w

H 2 ua

2 , e2 51
0

0

v

0

v2

2 , e3 51
0

0

0

w

w2

2 ,
from which we obtain eigenvectors

(20)

e1 51
1

u 1 v/R

v 2 u/R

w

H

2 , e2 51
1

0

0

0

2H

2 , e3 51
w

0

0

2H

wH

2 ,

e4 51
1

u

v

w

Asq2

2 , e5 51
1

u 1 a

v

w

H 1 ua

2 (24)

(where q2 5 u2 1 v2 1 w2 and a2 5 (c 2 1)[H 2 Asq2]),
corresponding to the eigenvalues e4 51

1 1 Asq2/H

2u

2v

2w

H 1 Asq2

2 , e5 51
1

u 2 v/R

v 1 u/R

w

H

2l1 5 u 2 a, l2 5 u, l3 5 u, l4 5 u, l5 5 u 1 a.
(21)

To complete the analysis we must show how to project corresponding to the eigenvalues
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be illustrated by means of the one-dimensional unsteady
l1 5

v 2 u/R
u 1 v/R

, l2 5
v
u

, l3 5
v
u

,

(25)
equations. Consider the momentum equation

(ru)t 1 (p 1 ru2)x 5 0, (29)l4 5
v
u

, l5 5
v 1 u/R
u 2 v/R

,

where, in order to discuss the differential equations, we
where have reverted to conventional notation. We will eliminate

p from this equation by making some assumption which
is valid in the steady limit, and the result will combine withR2 5

u2 1 v2

a2 2 1. (26)
the continuity equation to give a pair of equations which
can be solved for (r, u).

One strategy is to assume H 5 const, and then to differ-As before, we complete the solution by expressing
entiate H with respect to x, so obtaining

DF 5 O5
1

aiei
px 5

a2

c
rx 2

(c 2 1)
c

ruux . (30)

and we quote the results, for which it is convenient to
The eigenvalues which arise from this approach are theintroduce

roots of

S 5 a1 1 a5 1 2a4 . (27) cl2 2 (c 1 1)ul 1 u2 2 a2 5 0 (31)

Then we have in which, as previously, a2 5 (c 2 1)[H 2 Asu2]. These
are not the eigenvalues of the real time-dependent flow,

2Ha2 5 H DF1 2 DF5 , (28a) although it is interesting that in both cases u2 5 a2 produces
a zero root. This strategy is mentioned by Viviand [13].

q2S 5 u DF2 1 v DF3 , (28b)
Alternatively, we assume

2Ha3 5 DF4 2 wS, (28c)
px 5 a2rx (32)

(1 2 Asq2/H)a4 5 S 1 a2 2 DF1 , (28d)

with the same definition of a2, and then the eigenvaluesq2(a5 2 a1) 5 R(u DF3 2 v DF2), (28e)
are found to be the roots of

a5 1 a1 5 S 2 2a4 . (28f )

l2 2 2ul 1 u2 2 a2 5 0 (33)
The a posteriori check on independence of the eigenval-

ues leads to a determinant value of 8a2H(u2 1 v2)/R, con- just as in the real-time flow. There is no real paradox in
firming our expectation that the only troublesome condi- reaching the contradictory conditions (31) and (33) from
tions in supersonic flow will be those where the local Mach the false assumption H 5 const.
number is very large, or its x-component is close to unity. To implement the assumption (32), it can be shown that
Notice that this analysis simplifies usefully for the common we must delete the fifth component from the eigenvectors
special case of isoenergetic flow, defined by H 5 const. in (20) and delete the fourth eigenvector from the list,
This condition replaces the fifth equation in the Euler whilst replacing (22a) by a4 5 0. By taking this approach,
system, and we may delete the second eigenvector, since the present method leads to a pseudo-time-dependent
some simple algebra reveals that a2 5 0 in isoenergetic analysis of very simple structure.
flow. Also we can shorten the solution for the haij.

Strictly, no such simplification is possible in the unsteady A NUMERICAL EXPERIMENT
case, since even if a flow originates in an isoenergetic
stream, it will not remain isoenergetic unless very special It is doubtful whether the accuracy of an approximate

Riemann solution can profitably be discussed without ref-conditions apply. However, a fictitious flow is a legitimate
device for computing towards the steady state, as discussed erence to its intended use, so that numerical evidence has

only a very limited value. However, one particular experi-by Viviand [13]. There are several ways to do this, and it
is not easy to see which will converge fastest to the steady ment has led to a rather striking result which does seem

worth reporting. A variety of a new and established finite-state. However, from the viewpoint of the present analysis,
some alternatives are much simpler than others. This can difference schemes were compared by Sod [14] on the basis
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TABLE I

Computed density
Index

(I) Godunov Ref. [1]

72 0.2658 0.2655
73 0.2654 0.2652
74 0.2631 0.2629
75 0.2460 0.2458
76 0.1878 0.1881
77 0.1368 0.1370
78 0.1260 0.1260
79 0.1251 0.1251
80 0.1250 0.1250

FIG. 1. Exact and approximate solutions to a Riemann problem.

the new scheme on the same test problem. Now by contrast,
matters improve after the first time step. When comparedof their performance on a standard shock-tube problem

formulated in Eulerian coordinates. The density ratio was on the standard basis (35 time steps) the differences be-
tween the two solutions are insignificant everywhere. Theytaken to be 1 : 8, and the pressure ratio, 1 : 10. In Fig. 1 we

compare the exact solution for the density distribution with are largest near the progressing shockwave, but even there,
Table I shows that they are very small.the present approximation. The comparison is not very

close, but it is worth observing that the area beneath the The fact that the differences between the two solutions
are so slight, compared with the truncation errors whichtwo curves is identical (and can readily be proved so).

Now consider what happens if the exact Riemann solu- exist in both, supports the arguments put forward in the
Introduction. More accurate solutions to the same problemtion is used in conjunction with Godunov’s [4] finite-differ-

ence scheme to solve the same problem by advancing 35 by methods involving the present analysis are shown
in [1].time steps with Dt/Dx 5 0.411 (Sod’s standard comparison).

Truncation error in the finite-difference scheme degrades It may be interesting to insert here some observations
concerning run times for the two methods. An attemptthe results, producing the somewhat smeared solution

shown in Fig. 2. Now, if Godunov’s scheme is applied was made to eliminate subjective bias from the comparison
by having rival programmers work on each method andto the linear advection equation, it reduces to first-order

upwind differencing. First-order upwind differencing can the exercise formed part of a small project to improve
programming technique. The algorithm for the exact solu-be passed through the mechanism described in [1] to pro-

duce a new, nonlinear, first-order scheme, in which is em- tion was taken from Sod [14], but was improved in various
small ways. At the time of the exercise, the version duebedded the present approximation. We can then try out

FIG. 2. Numerical solution to a shock-tube problem, incorporating either the exact or the approximate Riemann solution in a first-order upwind
difference scheme.
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to van Leer [7] was not available. However, this would DFQ 5 O
j

ljajej (lj , 0),
probably not affect the results much since van Leer’s main
contribution is to reduce the number of iterations required

DFW 5 O
j

ljajej (lj , 0).to reach convergence, and on average only 1.6 iterations
were needed anyway. Each of these iterations was found to
take 0.20 ms on a DEC KL-10 computer using its optimised Now this identification fails, and some of the realism
FORTRAN compiler, so that the total time spent on solv- may be lost, if one of the waves (let us say the kth wave)
ing the Riemann problems was 0.20 3 1.6 3 99 grid inter- should in fact be a fan which spans x 5 0. In the exact
vals 3 35 time steps 3 1023 5 1.11 s. The total CPU solution part of the kth wave contribution to DFQ, and the
time, excluding input/output operations, was 2.02 s, the remainder to DFW, but in the approximate solution all of
remaining 0.91 s being accounted for by the Godunov the kth wave will contribute to one or the other, depending
differencing scheme into which the Riemann solutions on the sign of lk . An extreme example of this failure arises
were incorporated. if we consider an interval for which Fi 5 Fi11 , ui ? ui11 ,

To find an approximate solution of each Riemann and conditions are such that an expansion should occur,
problem by the present method took 0.27 ms, so that rather than a shockwave. In such a case, although DF is
the total time spent solving Riemann problems was 0.94 zero, DFQ and DFW, as determined by the exact Riemann
s, not in itself a very significant reduction. However, the solution, will be equal and opposite. A differencing scheme
pay-off comes from the fact that the information is which uses this information can break the discontinuity
immediately available in usable form, as time increments into the correct fan-like structure.
of u due to each wave system. This meant that the total The present approximate analysis, if applied straightfor-
CPU time (again excluding input/output operations) was wardly, would yield DFQ 5 DFW 5 0 and so provide no motive
only 1.09 s. Furthermore, this same feature could be for breaking up the unrealistic discontinuity. An empirical
exploited in higher-order algorithms, of the kind de- cure for the problem is not hard to devise. For each interval
scribed in [1]. A typical second-order algorithm took which contains a sonic point one creates artificially an equal
about 1.20 s, and the incorporation of additional logic and opposite contribution to DFQ and DFW. Work is in hand
to make the results monotone raised the time to 1.78 to provide a fuller theoretical justification for this process
s. The third-order monotone results shown in [1] took and to find its neatest implementation.
1.90 s to produce. It is quite possible that these precautions may sometimes

be dispensed with. When the present methods have been
A NOTE OF ENTROPY CONDITIONS applied to analyse the transonic flow over aerofoils [11]

no special treatment was found necessary near the sonic
The main purpose served by introducing a Riemann line. However, it would be unwise to rely on such computa-

solver (either exact or approximate) into a finite-difference tions in any case where the physical correctness of the
scheme is presumably that of providing physical realism by solution was less apparent. The prospective user would be
correctly discriminating between information which should advised to employ either an empirical device of the kind
propagate with different speeds. The most basic distinction described above, or some form of artificial viscosity. A
is simply between information which should propagate to general theory which combines approximate Riemann
the left or to the right. When the Riemann problem is solvers and artificial viscosities has been presented by
solved exactly for a flux difference Fi11 2 Fi 5 DFi11/2 , this Harten and Lax [10].
is accomplished as follows. Let FM be the state obtained
in the exact solution for x 5 0, t . 0. Then CONCLUDING REMARKS

In [1] we described a strategy for obtaining numericalDFQ i11/2 5 FM 2 Fi ,
solutions to hyperbolic initial-value problems. In the pres-

DFW i11/2 5 Fi11 2 FM , ent paper we have enlarged the details of one element in
that strategy, but feel that our results may perhaps find
wider application. Our investigations into the Euler equa-where the arrows denote contributions from left- and right-
tions have revealed some very tidy structures. Also themoving waves. In the present approximation we have
existence of a fast approximate Riemann solver may be(dropping the i subscript)
found more generally useful. Our programming experience
is that the present direct method is about as time-consum-DF 5 O

j
ljajej

ing as one cycle of the iterative procedures mentioned in
the Introduction. In the majority of cases which arise in a
finite-difference calculation, the direct solution is alreadyand we identify the left- and right-moving components as
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4. S. K. Godunov, Mat. Sb. 47, 271 (1959). [As U.S. JPS translationvery accurate and might be used to reduce the number of
7226 (1960)]iterations needed to obtain any more exact solutions which

5. R. D. Richtmyer and K. W. Morton, Difference Method for Initial-may be required. However, this approach has yet to be
Value Problems (Interscience, New York, 1967).explored. Finally we remark that a variety of interesting

6. M. Holt, Numerical Methods in Fluid Dynamics (Springer-Verlag,formulae may be obtained by translating the results of this
New York/Berlin, 1977).

paper from conservative variables into physical variables,
7. B. van Leer, J. Comput. Phys. 32, 101 (1979).

such as (r, u, v, w, p).
8. J. Glimm, Comm. Pure Appl. Math. 18, 697 (1965).
9. A. J. Chorin, J. Comput. Phys. 22, 517 (1976).
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